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Errors in the Hardware



Credit:

—
= ©
©
© - 3
& i ® 1 |
©) 1
Ly © i }
o |
NE E ® =1
© 6
©
©
©
©
©
©
o ©
® E

Andrew Huang (2007)



Electrostatic discharge

ey
= ©
©
© . .
&y & i ® I |
©
s T © i N ]
i © | [ e
© | %  © =
: © i ®
! ©
D 9
T ©
©
©
©
® ©
® E

Credit: Andrew Huang (2007)



Electrostatic discharge Electrical overstress
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That is not the end of the story

Correct circuits are still faced with aging



Part 5 of 5

Circuit Reliability Analysis
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